Formation of α clusters in heavy nuclei probed by the $(p, p\alpha)$ reaction

Z. H. Yang^{1,2}, J. Tanaka^{3,4,1}, S. Typel^{3,4}, S. Adachi², T. Aumann^{3,4,5}, S. Bai⁶, P. v. Beek³, D. Beaumel⁷,

Y. Fujikawa⁸, J. Han⁶, S. Heil³, S. Huang⁶, A. Inoue², Y. Jiang⁶, M. Knösel³, N. Kobayashi², Y. Kubota¹,

W. Liu⁶, J. Lou⁶, Y. Maeda⁹, Y. Matsuda¹⁰, K. Miki¹¹, S. Nakamura², K. Ogata^{2,12}, V. Panin¹, H. Scheit³,

F. Schindler³, P. Schrock¹³, D. Symochko³, A. Tamii², T. Uesaka¹, V. Wagner³, K. Yoshida¹⁴, J. Zenihiro¹

¹RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako 351-0198, Japan

²Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki 567-0047, Japan

³ Technische Universität Darmstadt, Fachbereich Physik, Institut für Kernphysik, Schlossgartenstraße 9, 64289 Darmstadt, Germany

⁴GSI Helmholtz Center for Heavy Ion Research GmbH, Planckstraße 1, 64291 Darmstadt, Germany

⁵Helmholtz Research Academy Hesse for FAIR, Schlossgartenstraße 9, 64289 Darmstadt, Germany

⁶State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing

100871, China

⁷Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

⁸Department of Physics, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502, Japan

⁹Faculty of Engineering, University of Miyazaki, 1-1 Gakuen, Kibanadai-nishi, Miyazaki 889-2192, Japan

¹⁰Cyclotron and Radioisotope Center, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578,

Japan

¹¹Department of Physics, Tohoku University, Sendai 980-8578, Japan

¹²Department of Physics, Osaka City University, Osaka 558-8585, Japan

¹³Center for Nuclear Study, The University of Tokyo, 2-1 Hirosawa, Wako 351-0198, Japan

¹⁴Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

Formation of clusters in nuclei is a topic of interest and fundamental significance throughout the history of nuclear physics [1, 2]. In light nuclei, development of cluster structure in states close to the corresponding decay threshold is a well established phenomenon ("Ikeda threshold rule" [3]). Many novel cluster states have been reported in light nuclei—the α -condensate states (e.g., Hoyle state), the molecular states in beryllium isotopes, and the 3- α -linear-chain states in carbon isotopes [1, 2, 4]. In heavy nuclei, on the other hand, the existence of α clusters remains elusive [5]. It has been postulated as a pre-requisite in α decay theories since Gamow's pioneering work in the 1920s, but direct experimental evidence has not been reported so far [5, 6].

Recent generalized relativistic density functional (gRDF) calculations, with cluster formation explicitly taken into account, suggest that α clusters can form at the low-density surface region of heavy nuclei, which could potentially explain the origin of α particles in α decay [8, 9]. This model further predicts a close interplay between surface α -clustering and neutron-skin thickness Δr_{np} in heavy nuclei and as a consequence Δr_{np} gets reduced in comparison to theoretical calculations without considering the α -clustering effect, which will further affect our understanding of the density dependence of the symmetry energy in the nuclear equation of state. As a result of this interplay, the formation of α clusters also gets hindered by the development of a neutron skin in heavy nuclei. According to gRDF calculations, the α -clustering strength (defined as "the effective number of α clusters" in [9]) in tin isotopes decreases monotonically with increase of the mass number [9]. The systematics of the α -clustering strength along the tin isotopic chain can be directly investigated by using quasi-free $(p, p\alpha)$ reaction—a well established experimental probe for α -clustering for decades in light nuclei [10, 11]. This kind of measurements have been widely used to study α -clustering for decades in light nuclei and has been particularly highlighted in recent years thanks to the significant progress in reaction theories [10, 12, 13].

Therefore, we carried out a quasi-free $(p, p\alpha)$ experiment at RCNP to examine the surface α -clustering strength in ^{112,116,120,124}Sn and its isotopic dependence. The result was recently published in Science [14]. The experiment, as illustrated in Figure 1, was performed with the 392 MeV proton beam at the WS beam line. The scattered protons and α particles after the $(p, p\alpha)$ reaction were detected in coincidence by the Grand Raiden and LAS spectrometers. The experimental setup was designed according to the kinematics of the proton scattering off a preformed α particle and optimized to achieve detection of low-energy α particles (down to ~50 MeV) and high signal-to-noise ratio. In the proof-of-principle measurement with the ^{nat}Li target, we checked that the correlated proton- α particle pair was correctly recorded and the missing-mass spectrum exhibited a prominent peak at ~2.4 MeV, in good agreement with the known α -separation energy of ⁷Li(2.47 MeV) [15]. This clearly validates our detector setting and analysis method for the quasi-free $(p, p\alpha)$ experiment.

For each of the four tin isotopes, the missing-mass (M_X) spectrum [Figure 2 (left panel)] shows a clear peak located at the known α -separation energy, as expected for the quasi-free knockout of preformed α particles. This result thus provides direct evidence for the preformation of α particles in these tin isotopes. The observed momentum distribution of the α particles further reaffirms that the formation of α particles indeed occurs in the low-density surface region of heavy nuclei as predicted by the gRDF calculation. The M_X spectra are well fitted with the Gaussians for the ground-state peaks and the simulated line shapes of the continuum. By integrating the ground-state peak, the $(p, p\alpha)$ cross section $(\sigma_{p,p\alpha})$ is deduced for each tin isotope. As shown in the right panel of Figure 2, $\sigma_{p,p\alpha}$ gradually decreases as the mass number increases, with a factor of ~2 decrease from ¹¹² Sn to ¹²⁴Sn. The observed isotopic systematics of $\sigma_{p,p\alpha}$ is well reproduced by theoretical calculations taking into account the radial density distributions of the α clusters of the gRDF prediction and the reaction mechanism. Further analysis confirms that the observed decline in $\sigma_{p,p\alpha}$ is indeed predominantly caused by the decrease in the α -clustering strength while the effect of the reaction mechanism is minor. Our result thus supports the tight interplay between the surface α -clustering and Δr_{np} in heavy nuclei, which will lead to a reduction of Δr_{np} in comparison to theoretical calculations without considering the α -clustering effect as predicted by the gRDF calculations [9]. A linear correlation between Δr_{np} and the slope parameter L has been predicted by mean-field model calculations [16] and is generally used to constrain L. As a matter of fact, many projects across the world are ongoing to measure the neutron-skin thicknesses of heavy nuclei like ²⁰⁸Pb with sufficient precision. Our result suggests the necessity of considering the effect of nuclear clustering when constraining the EOS parameters from the neutron-skin thicknesses [14, 17].

Figure 1: Illustration of the quasi-free $(p, p\alpha)$ experiment based on the Grand Raiden and LAS spectrometers.

Figure 2: (Left)The measured missing-mass (M_X) spectrum for ¹¹²Sn. The red solid line shows the results of the fits with the Gaussians for the ground-state peaks (the black dashed-dotted lines) and the simulated shapes of the continuum (the blue dashed lines). Similar analysis is also performed for the other three tin isotopes ^{116,120,124}Sn. (Right) Isotopic dependence of the $(p, p\alpha)$ cross section $(\sigma_{p,p\alpha})$, as determined experimentally (black points) and theoretically (red line).

References

- [1] M. Freer et al., Rev. Mod. Phys. 90, 035004 (2018).
- [2] W. von Oertzen, M. Freer, and Y. Kanada-En'yo, Phys. Rep. 432, 43 (2006).
- [3] K. Ikeda, N. Tagikawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. E 68, 464 (1968).
- [4] P. Schuck et al., Phys. Scr. 91, 123001 (2016).
- [5] C. Qi, Prog. Part. Nucl. Phys. 105, 214 (2019).
- [6] G. Gamow, Z. Phys. **51**, 204 (1928).
- [7] G. Röpke, Phys. Rev. C 90, 034304 (2014).
- [8] S. Typel et al., Phys. Rev. C 81, 015803 (2010).
- [9] S. Typel, Phys. Rev. C 89, 064321 (2014).
- [10] P. G. Roos et al., Phys. Rev. C 15, 69 (1977).
- [11] A. Nadasen et al., Phys. Rev. C 40, 1130 (1989).
- [12] K. Yoshida et al., Phys. Rev. C 94, 044604 (2016).
- [13] M. Lyu et al., Phys. Rev. C 97, 044612 (2018).
- [14] Junki Tanaka, Zaihong Yang, Stefen Typel, et al., Science 371, 260 (2021).
- [15] Zaihong Yang et al., JPS Conf. Proc. 32, 010040 (2020).
- [16] X. Roca-Maza et al., Phys. Rev. Lett. 106, 252502 (2011).
- [17] Or Hen, Science **371**, 232 (2021).